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Abstract

This study introduces an integrated approach to the transmission of bearing vibrations in a generalized
sense where the bearing is presented as a three-dimensional joint-model. A specially manufactured device
and a corresponding analytical model are presented in order to compare experimental and numerical
methods for investigating bearing transmission and bearing identification. Based on a multi-degree-of-
freedom dynamic analysis, a predefined three-dimensional model of the bearing is used in a frequency
domain synthesis with analytical and experimental modal analyses and FEM updating in order to obtain
the system’s overall dynamic properties. Such an approach separates the model of the bearing and its
investigation from the remaining linear part of the whole system, which speeds up the computation and
broadens the investigation’s capabilities. A bearing-identification algorithm, using a perturbation approach
with frequency response sensitivities and correlation analysis, is proposed, together with the required
frequency response function’s measurements and identification results.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, many approaches and results have been presented in the field of the
vibration of bearings and the transmission of vibration through bearings. In this paper the
discussion will be limited to deep-groove ball bearings that are part or a subsystem of a larger,
more complex system. There is often a need to determine the natural frequencies and mode
shapes, or even the transient responses to various inputs, of such complex systems that
incorporate ball bearings. Bearings are usually used as spindle-or shaft-supporting parts that have
their own dynamic properties. In order to predict a response simulation, the bearing’s dynamic
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properties are represented as a mathematical model, which should reflect the real system—the
bearing—as well as possible.
Investigations of bearing dynamics and its influence on an adjoining system began many

decades ago. The bearing was represented by a simple one- or two-degree-of-freedom (2-d.o.f.)
model, with linear springs, and with or without damping [1,2]. Later, more refined bearing models
were introduced, but the main improvement was the 5-d.o.f. bearing model from Lim and Singh
[3,4]. This model assumes rigid outer and inner rings and deformable balls. Subsequent research,
based on the model of Lim and Sing was still restricted to simple models, i.e., only for bearings
with simple, equivalent models of adjoining systems [5–7]. A similar usage of the theoretically
derived, bearing-stiffness model, in conjunction with simple models of adjoining systems, was
presented by Royston and Basdogan [8] for the self-aligning, spherical ball bearing, where some of
the terms from the stiffness matrix were validated experimentally. The transmission phenomena
on the theoretically derived stiffness of the tapered roller bearing vibrations was studied by
Bilodeau [9], whereas Rook and Singh [10] studied an integrated approach to the power flow of
rolling–bearing connected structures considering bearing–adjoining-system interactions and their
influence on the bearing’s model definition.
Some authors investigated bearing-support models, where more detailed models were used for

the adjoining systems (supports, spindles, etc.) or, alternatively, less detailed bearing models were
used [11–14]. Other researchers simply studied bearing-induced vibration without transmission
phenomena [15,16]. All of these analyses just mentioned were linear analyses. However, non-linear
analyses investigating the bearing dynamics [17–19] are usually more complex with respect to the
bearing-support model definition as well as in transmission studies.
Recent studies, in this case for studying shaft-bearing-support systems, are those with

discretization principles, mainly approaches that involve distributed parameter systems [20–22],
and finite-element-based analyses in conjunction with various reduction and coupling methods
[12,23–25], in the numerical and experimental senses. These methods deal with m.d.o.f. systems,
regardless of the type of the analytical–numerical approach used.
In this article, a m.d.o.f.-based investigation using the finite-element method, model reduction,

coupling analyses, correlation, model updating, experimental work, and bearing identification is
described to study the dynamic properties of a complex system involving deep-groove ball
bearings. The approach proposed is an indirect one, and the bearing-model validation as well as
the identification of the terms from the bearing’s stiffness and damping matrices, respectively, is
achieved using a special-purpose experimental device.

2. m.d.o.f. analysis and FRF coupling

2.1. Bearing model

According to the Hertzian contact theory the relation between ball displacement and the
normal force for a steel-based deep-groove ball bearing can be expressed as [1,2]:

d ¼ 4:37� 10�4 Q2=3

d1=3
ðmmÞ; ð1Þ
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when inserting the normal force, Q; in N and ball’s diameter, d; in mm. Following Lim and Sing’s
bearing model [3], the mean bearing displacement, qbm; and the mean bearing force, fbm; are defined
as (see Fig. 1):

qbm ¼ fdxm; dym; dzm;bxm; bymg
T; ð2Þ

and

fbm ¼ ffxm; fym; fzm;mxm;mymg
T: ð3Þ

d are the displacements in m, b are the rotations in rad, f are the forces in N, and m are the
moments in N m: The normal, dnj

; and radial, drj
; displacements of the jth ball are expressed as

dnj
¼ dzm þ rjðbxm sinðcjÞ � bym cosðcjÞÞ; ð4Þ

and

drj
¼ dxm cosðcjÞ þ dym sinðcjÞ � g: ð5Þ

By rewriting Eq. (1) for the jth ball in the form Qj ¼ Knd
n (n ¼ 3=2; d inserted in m, and Kn in

N=mn), where n ¼ 3
2
; and defining the jth ball’s displacement and contact angle aj as (see Fig. 1):

dðcjÞ ¼
AðcjÞ � A0 djX0;

0 djo0;

(
AðcjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd�njÞ

2 þ ðd�rjÞ
2

q
;

d�nj ¼ A0 sin a0 þ dnj; d�rj ¼ A0 cos a0 þ drj; tan aj ¼ d�rj=d
�
nj; ð6Þ
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Fig. 1. Deep-groove ball bearing with dimensions and mean displacement (a); deformation of a ball under mean

force (b).
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the mean bearing force is obtained by summing the contributions from Z balls:

fbm ¼

PZ
j¼1 Qj cos aj coscjPZ
j¼1 Qj cos aj sin cjPZ

j¼1 Qj sin ajPZ
j¼1 rjQj sin aj sin cjPZ

j¼1�rjQj sin aj coscj

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
: ð7Þ

A0 and AðcjÞ are the unloaded and loaded distances between the inner and outer curvature
centers, respectively. Finally, the 5� 5 matrix of bearing stiffness is expressed as

Kbm ¼
@fbm

@qbm

¼

kxx kxy kxz kxbx kxby

kyy kyz kybx kyby

kzz kzbx kyby

symmetric kbxbx kbxby

kbyby

2
66666664

3
77777775
: ð8Þ

From Eq. (8), 15 different displacement-dependent stiffness coefficients can be derived, e.g.,

kxx ¼ Kn

XZ

j

ðAj � A0Þ
n cos2 cjðnAjðd

�
rjÞ

2=ðAj � A0Þ þ A2
j � ðd�rjÞ

2Þ

A2
j

: ð9Þ

Usually, only the mean bearing force is known (the bearing’s static pre-load), therefore, a set of 5
non-linear equations in the form

F ¼ fbm0
� fbm; ð10Þ

is used to calculate the load-dependent bearing displacement and then stiffness according to a
given mean bearing force, fbm0

: Eq. (10) can be solved using the Newton–Raphson scheme. The
finite-element model for Kbm is shown in Fig. 2a.
Together with the mean bearing stiffness Kbm; and the force and displacement com-

patibility, the two-node, bearing finite-element Kb2 was constructed, which also represents a
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Fig. 2. Finite-element models of a bearing as Kbm (a), two-node, bearing FE (b), and five-node, bearing FE (c).
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joint (Fig. 2b):

Kb2 ¼
Kbm �Kbm

�Kbm Kbm

" #
: ð11Þ

Furthermore, the two-node, bearing model was extended to a five-node, bearing model (Fig. 2c)
using the sum of 4 two-node elements in a FE sense:

Kb5 ¼
X4
j¼1

1

4
Kb2: ð12Þ

A 5-d.o.f. diagonal mass matrix Mbm was constructed in an approximative way:

Mbm ¼

mb=2

1 0 0

0 1 0

0 0 1

2
64

3
75 0

0 mbd2
bm

1 0 0

0 1 0

0 0 2

2
64

3
75

2
6666666664

3
7777777775
; ð13Þ

and extended into a 5-node FE in the same manner as the stiffness matrix. Eq. (8) will be used as
an initial estimate to calculate the bearing’s stiffness and the damping matrix needed in the FRF
coupling analysis and in the identification algorithm as presented in subsequent sections.

2.2. Coupling of subsystems

A bearing, as a part or subsystem of a larger and more complex system, influences the overall
dynamic properties of such a system, mainly because of its stiffness and damping properties.
Investigating a bearing’s dynamic properties directly, in the experimental sense, is a difficult job to
accomplish, and the only reasonable way to investigate its influence in this case was by choosing
an indirect approach known as the coupling approach. Coupling methods enable investigation of
each subsystem to be carried out separately, numerically and/or experimentally. Although there
are many coupling methods, either in the modal or the frequency domain, with each possessing
some advantages and some disadvantages [26], the frequency response function (FRF) coupling
methods do have some advantages, especially in cases of experimentally derived subsystem
models.
For the purpose of investigating a bearing’s influence using numerical and experimental indirect

approaches, a 4-system model consisting of subsystems A and B; and two bearings (subsystems C
and D) as shown in Fig. 3, was used. The linear subsystems A and B can be studied separately, and
with an adequate level of accuracy, using the FEM or an experiment, and are therefore known;
subsystems C and D (bearings) can only be investigated numerically on the basis of a predefined
model. The 5-node FE bearing model from the previous section was used to be coupled (FRF
coupling) with the numerically known subsystems A and B; considering rotational degrees-of-
freedom at coupling interfaces.
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In general, the procedures for obtaining subsystem models depend on the coupling method
used, the connection points, the d.o.f. properties, the required accuracy level, etc. To use the FRF
coupling method to connect four subsystems at the connection points from Fig. 3(b) the response
models of those subsystems must be provided. The response models for subsystems A and B can
be derived directly from the FEM analysis. Assuming the hysteretically damped model, knowing
the modal data for subsystems A and B; the modal matrices UA; UB; and the eigenvalue matrices
x2

rA
; x2

rB
; the response model in the form of accelerance is as follows:

HjkðoÞ ¼ �o2
XM

r¼1

fjrfkr

o2
r � o2 þ iZro2

r

: ð14Þ

Eq. (14) represents an approximate value for the accelerance FRF as M designates the limited
number of modes used during the FRF’s construction. frk are the coefficients from a
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Fig. 3. Four subsystems connected (a) and connection points (nodes) along with FEM model schematics for the

subsystems (b).
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mass-normalized modal matrix U and Zr are the modal damping loss factors obtained by means of
an experimental modal identification using Ewins-Gleeson’s method for lightly damped systems
[26] (see Table 1). The damping was identified using impact test measurements of accelerance-type
FRFs on each subsystem (see Section 4.1). Alternatively, using the least-squares method, factors
of the proportional Rayleigh damping, a and b; can be calculated to avoid the absence of the
unmeasured Zr: A different form of the FRF model is used in such a case:

HjkðoÞ ¼ �o2
XM

r¼1

fjrfkr

ð1þ ibÞo2
r � o2 þ ia

; D ¼ aMþ bK; ð15Þ

with D as a hysteretic, proportional damping matrix.
Models for a bearing’s response can, however, only be predicted when using a predefined

stiffness, mass, and damping properties. Using the stiffness model from Section 2.1, the simplified
mass model in the form of a diagonal matrix and a predefined proportional viscous model along
with basic relations yields the bearing’s response model in the form of an accelerance FRF matrix:

HðoÞb5 ¼ �o2ðKb5 þ ioCb5 � o2Mb5Þ; Cb5 ¼ bbKb5: ð16Þ

The reason for using the basic form of FRF coupling [24,26] instead of one of the alternative
forms [27] is to allow one to couple more than two systems and to derive the system’s sensitivity
matrix, as will be shown later (Section 3.1). Invoking the compatibility of displacements and the
equilibrium of forces at the connection nodes gives us the well-known formula for the FRF of the
whole, connected system HðoÞS:

HðoÞS ¼ ðHðoÞ�1
A "HðoÞ�1

B "HðoÞ�1
C "HðoÞ�1

D Þ�1; ð17Þ

where " designates summing in terms of the finite-element summing of stiffness and mass
matrices.
One should note that a priori modal and coordinate reduction is performed when only a

portion of the FEM data for the A and B systems is used. However, additional co-ordinate
reduction can be made directly on the FRF matrix, but not on the impedance matrix. The overall
process for coupling the four systems is shown in Fig. 4.

3. Perturbation analysis and correlation

This section briefly presents the perturbation approach and least-squares updating of the model
in a frequency domain, which serves as a tool to obtain the necessary modifications of the
analytical model to correlate with the experimental model. Again, all the expressions refer to the
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Table 1

Experimentally identified modal loss factors for subsystems A and B

Modes ðrÞ and corresponding Zr in %

1 2 3 4 5

Subsystem A 4.51 3.09 0.28 0.24 0.21

Subsystem B 0.14 0.14 0.098 — —
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accelerance response model and in addition to a priori reduction from Section 2.2, the analytically
coupled system model will be further spatially reduced (R) to achieve consistency with the
experimental model – experimentally measured FRFs.

3.1. Least-squares model updating using FRF sensitivities

The well-known perturbation-based approach using the correlation principle and model
updating (e.g. Ref. [26]) is used here to obtain the numerical algorithm for bearing-identification
purposes. Applying a single-input unit force at coordinate j; f j ¼ f0; 0;y; 1; 0;y; 0gT; to the
analytical (FEM) and corresponding experimental models gives

ZuðoÞHxðoÞf j ¼ Ij ¼ ZaðoÞHaðoÞf j; ð18Þ

where Zu designates the updated impedance matrix (virtual mass) of the analytical system.
Inserting

ZuðoÞ ¼ ZaðoÞ þ DZaðoÞ; DZaðoÞE
XNp

i¼1

@ZaðoÞ
@pi

Dpi; ð19Þ
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Fig. 4. Partitioning scheme for the four systems to be coupled using the standard FRF coupling method (a); algorithm

of the coupling procedure (b). Index x denotes the experimental and index a the analytical model, respectively.
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into Eq. (18) and rearranging gives

HaðoÞDZðoÞHxj
ðoÞ ¼ Haj

ðoÞ �Hxj
ðoÞ ¼ DHjðoÞ: ð20Þ

Pre-multiplying Eq. (20) by HaðoÞ yields the linear system of equations for calculating the Dp
parameters

SðoÞDp ¼ DHaj
ðoÞ; ð21Þ

with

SðoÞ ¼ HaðoÞ
@ZaðoÞ
@p1

Hxj
ðoÞ^?^

@ZaðoÞ
@pNp

Hxj
ðoÞ

� �
; ð22Þ

where a denotes the analytical model, u denotes the updated model, x denotes the experimental
model, Np denotes the number of parameters which ZaðoÞ; and therefore HaðoÞ; depend on, and
SðoÞ denotes the sensitivity matrix.
If formulae (18)–(22) are to be used, the analytical system matrices have to be further reduced

ðRÞ to become consistent with the experimental matrix, HxðoÞ; and experimental vector, Hxj
ðoÞ:

The reduction of the FRF matrices and their derivatives, such asHR
a ðoÞ; can be applied directly by

retaining only the remaining rows and columns. On the other hand, reduced impedance matrices
and their derivatives (i.e., ZR

a ðoÞ) can only be obtained indirectly using

@HR

@pi

¼ �HR @ZR

@pi

HR )
@ZR

@pi

¼ �ZR @HR

@pi

ZR; ð23Þ

and

ZR ¼ ðHRÞ�1: ð24Þ

In accordance with this approach, @HR=@pi is bearing-dependent only, and therefore is a sparse
matrix; and as a consequence, @ZRðoÞ=@pi is a sparse matrix too.
In cases when the number of parameters, Np; is larger than the number of rows in the reduced

sensitivity matrix SðoÞ; and if even the weighting is introduced, an over-determined system of
equations in Eq. (22) is obtained. For that, additional frequency points can be invoked to expand
system (22) (in reduced form—R):

SRðo1Þ

^

SRðoNf
Þ

2
64

3
75Dp ¼

DHR
j ðo1Þ

^

DHR
j ðoNf

Þ

2
664

3
775; ð25Þ

or in a more compact form (marked with �):
S�RðoÞDp ¼ H�R

j ðoÞ: ð26Þ

Since Dp are real-valued parameters, system (26) is further split into real (r) and complex (c)
parts as

S�R
r ðoÞDp ¼ DH�R

jr ðoÞ; ð27Þ

S�R
c ðoÞDp ¼ DH�R

jr ðoÞ; ð28Þ
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and only Eq. (27) is used to calculate Dp: S�RðoÞ is the expanded sensitivity matrix over the
reduced analytical system, Dp are the parameter changes to be found, and DH�R

jr ðoÞ is a vector of
discrepancies between the analytical and corresponding experimental FRFs at selected frequency
points.
Additional weighting can also be applied according to Nf frequency points, experimental FRF

locations, or both, using the diagonal matrix W:

WrS�RðoÞDp ¼ WDH�R
jr : ð29Þ

Finally, using the pseudo-inverse, the requested parameters are expressed in terms of the weighted
least-squares approach as

Dp ¼ ððS�R
r ðoÞÞTWS�R

r ðoÞÞ�1ðS�R
r ðoÞÞTWDH�R

jr : ð30Þ

3.2. Parameter-identification algorithm

The bearing’s stiffness matrix from Section 2.1 provides 15 different stiffness coefficients,
regardless of the number of nodes used for the formulation of the FE model of the bearing (the
5-node FE model proposed). Additionally, 15 different damping parameters were applied with the
initial values as

Cb5 ¼ bbKb5; ð31Þ

which together represent 30 bearing parameters to find, using Eq. (30). As the linearized equation
(20) is only valid for small discrepancies between the analytical and experimental models in terms
of DH�R

jr ðoÞ; the same restriction is applied to all the subsequent equations in Section 3.1. In this
case the discrepancies, DH�R

jr ðoÞ; are up to 100% at the selected frequency locations with respect
to the initial value of the numerical FRF. A special form of the iterative algorithm was introduced
(Fig. 5) to estimate the required change of the updating parameters, Dp:
The iteration algorithm used is shown in Fig. 5, where the additional relaxation parameter g is

introduced in order to improve convergence for cases of large discrepancies in DH�R
jr ðoÞ: In each

iteration loop n; g is calculated for every parameter pk as

gnk
¼

ab

ðjDpnk
=pnk

j þ aÞb
; k ¼ 1;y;Np; ð32Þ

where a and b represent the controlling parameters.
Together with the analytical models for A; B; C; and D; a corresponding experimental model

is needed (the experimental object, which is called the experimental device) on which the modal
identification can be performed. This is explained in the following section.

4. Experiment and results

4.1. Experimental device and FRF measurements

The special-purpose experimental device was made in accordance with the model shown
in Fig. 3. The device allows two ball bearings, connected by a shaft, to be inserted and an axial
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pre-load to be applied to the bearings (Fig. 6). An impact test, using a hammer and an
accelerometer, was used to measure the accelerance FRFs. The accelerometer was fixed at point
91, and the acceleration was measured in the z direction. The weight of the shaft, together with the
partial weights of the two bearings, represented the constant radial pre-load on the two bearings.
The influence of the shaft with two bearings on the FRF response of the device is shown
in Fig. 7.
To observe the damping in subsystems A and B; separate FRF measurements were

made on each subsystem, and the modal identification analysis was applied to extract
the modal frequencies, the modal matrix, and the modal damping on the basis of the
hysteretic and lightly damped dissipation model. Moreover, measurements of accelerance FRFs
for the whole connected system were made at some points on the experimental device,
from Fig. 6, and it was mainly those in the z direction that were used in subsequent
analyses. For bearing-identification purposes, using the approach from Section 3, one row or
column from the FRF matrix should be measured. Actually, all that needs to be measured is a
driving-point measurement: H91z�91z; in this case. To obtain better identification results, the
measurement of additional FRFs, in addition to the driving-point, is needed (see Fig. 8). In
other words, the system’s reduction level ðRÞ is dictated by the number of FRF measurements
used.
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Fig. 5. The bearing-identification algorithm, based on the frequency domain least-squares updating correlation

approach. The relaxation parameter is introduced to achieve better convergence by choosing appropriate parameters a

and b:
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4.2. Coupling results

With numerical accelerance FRFs data for A and B; which is obtained from a linear FEM
analysis with applied identified damping (Table 1), and bearings’ FRF according to the bearing
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Fig. 6. Experimental setup for the FRF measurement.

Fig. 7. The change of the H91z�2z FRF, comparing measurement of FRF on subsystem A only (solid line) and FRF

measurement on the connected system (dotted line).
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pre-load force, the coupling analysis can be used as described in Section 2.2 to obtain the
connected system’s FRF for any co-ordinate pair of provided subsystems and for any assumed
bearing pre-load force. These numerical results can be directly compared to the experimental
results (see, e.g., in Fig. 9).
From Fig. 9 it can be seen that the experimental overall FRF with the 18 N axial bearing pre-

load corresponds to the analytical FRF with a smaller, 3 N; axial pre-load. The reason is that the
bearing’s axial force changes a lot, relative to the initial pre-load ð18 NÞ; causing the bearing
stiffness to change when the system is vibrating (force-dependent stiffness, as discussed in
Section 2.1). The analytical and experimental FRFs, both with 18 N; do not correlate well, as the
analytical FRF tends to represent connections that are too stiff, resulting in a shift of the
resonance peaks (especially the peak at E280 Hz; see Fig. 9). The same applies for other pre-load
forces, when comparing the analytical and experimental FRF results. In this case, it turned out
that the resonances around 85, 660, 2200, and 2250 Hz are almost insensitive to the change in the
bearing’s stiffness, while the resonance around 280 Hz (in the case with the experimental force of
18 N) is not.
Abrupt changes in the analytical FRF occur at some frequency points as a consequence of the

rank-deficient system when calculating the coupled FRF. This could be avoided by using more
sophisticated FRF coupling methods [27], but in such cases an appropriate update or even a
change to couple more than two systems and to achieve an ability to derive a coupled system’s
impedance derivative matrix should be made.
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Fig. 9. Analytical (numerical) FRF of the connected system corresponding to the analytical pre-load force, fzm ¼ 3 N

(solid line), and the experimental FRF with fzm ¼ 18 N (dotted line).

Fig. 8. Minimum required FRF measurement (circled), and suggested FRF measurement (boxed) for bearing-

identification purposes.
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4.3. Identification results

For identifying the bearing parameter, one row or column from the measured FRF matrix
should be used and the corresponding, reduced analytical FRF information at 1;y;Nf frequency
points (Eqs. (26)–(30)). In this case, a row from the measurement FRF that corresponds to the 91z
co-ordinate was used. Moreover, 3z; 4z; 9z; 10z; 91z FRF measurement co-ordinates were used.
This implies that analytically coupled system has to be reduced correspondingly, in this case to
dimension (5� 5) in Eqs. (26)–(30).
Using the appropriate controlling parameters a and b to calculate the relaxation coefficient g; as

well as suitable frequency points, o1;y;oNf
; and initial values for pi; i ¼ 1;y; 30; convergence

can be achieved by implementing the algorithm from Fig. 5. The disparity, which is a sum of the
absolute differences between the experimental and corresponding analytical FRFs at selected
frequencies points, and for the whole set of FRFs (see Fig. 5), can represent an estimation, as well
as the quality, of the convergence in the identification process (see Figs. 10 and 11).

5. Conclusion

An integrated, generalized, indirect approach to the transmission of bearing vibrations was
proposed, based on a m.d.o.f. system analysis of four subsystems. The frequency domain coupling
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Fig. 10. The relative disparity change for the following frequency points: f80; 84; 260; 270; 275; 660; 665g: The

experimental axial force for the two bearings was 18 N; and the corresponding analytical force (indirectly providing

initial values for pi; i ¼ 1;y; 15), was 3 N: The controlling parameters were chosen as: a ¼ 0:1; b ¼ 4:

Fig. 11. The relative disparity change for the following frequency points: f80; 84; 260; 270; 275; 660; 665g: The

experimental axial force for the two bearings was 5 N; and the corresponding analytical force (indirectly providing

initial values for pi; i ¼ 1;y; 15), was 0:3 N: The controlling parameters were chosen as: a ¼ 0:1; b ¼ 4:

P. $Cermelj, M. Boltemar / Journal of Sound and Vibration 276 (2004) 401–417414



method was applied for the coupling of two analytically provided and updated subsystems with
two bearings into a specially shaped system. Such a system provided the opportunity to compare
experimental and analytical frequency response function results directly, which served as a tool to
explore the appropriate bearing pre-load estimation, and, as a consequence, the validity of a
bearing model. Moreover, such an approach is useful for large systems, where bearings represent
only a connection between some parts of a large system, and serves as a convenient investigation
of a bearing’s influence on the overall dynamics of a system.
Additionally, using the perturbation approach in a correlation analysis, a bearing-identification

algorithm was proposed, whose quality depends on the initial parameter values as well as on the
bearing model. Selecting the appropriate initial values for the bearing parameters, the
convergence in the identification algorithm can be obtained. The identification results show that
to obtain a proper initial value for the bearing’s stiffness and damping matrices using Eqs. (8) and
(31), respectively, an appropriately smaller value can be used for the bearing pre-load estimation.
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Appendix. Nomenclature

a; b controlling parameters for the calculation of the relaxation parameter
A0 unloaded distance between the centers of inner and outer curvature
AðcjÞ loaded distance between the centers of inner and outer curvature
Cb5 5-node bearing’s viscous damping matrix
d ball diameter
D hysteretic damping matrix
F generalized force vector
fbm mean bearing force vector
f j unit-force vector
fxm; fym; fzm mean bearing forces in x; y; and z directions
H; Hj accelerance FRF matrix and the jth column from the accelerance FRF matrix,

respectively
Hjk accelerance FRF which corresponds to input ðkÞ and output ð jÞ location
Kb2 2-node bearing stiffness matrix
Kb5 5-node bearing stiffness matrix
Kbm mean bearing stiffness matrix
Kn load–deflection coefficient of the ball
kxx bearing stiffness coefficient
mxm;mym mean bearing moment about x- and y-axis
Mb2 2-node bearing mass matrix
Nf number of frequency points
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Np number of parameters
p;Dp vector of parameters; vector of parameters’ changes
rj distance from the bearing center axis to inner curvature center
qbm mean bearing displacement vector
Q normal force load (N)
S sensitivity matrix
W diagonal weighting matrix
Z impedance matrix (virtual mass)
a; b factors of proportional damping
bb factor of bearing’s proportional, viscous damping
aj jth contact angle
d deflection; displacement
dnj

displacement of the ball in the normal ðzÞ direction
drj

displacement of the ball in the radial direction
Z modal damping loss factor
g relaxation parameter
o angular frequency (rad/s)
x2

r diagonal matrix of squared natural frequencies ðrad2=s2Þ
f a term from the mass-normalized modal matrix
U mass-normalized modal matrix
cj jth ball’s angle, measured from the positive x-axis
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